Lemma 69.7.1. With $S$, $W$, $G$, $U$, $\chi $ as in Lemma 69.6.5. If $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ U$-module, then so is $\mathcal{F} \otimes _{\mathbf{Z}} \underline{\mathbf{Z}}(\chi )$.
Proof. The $\mathcal{O}_ U$-module structure is clear. To check that $\mathcal{F} \otimes _{\mathbf{Z}} \underline{\mathbf{Z}}(\chi )$ is quasi-coherent it suffices to check étale locally. Hence the lemma follows as $\underline{\mathbf{Z}}(\chi )$ is finite locally free as a $\underline{\mathbf{Z}}$-module. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)