Lemma 46.6.3. Let $f : T \to S$ be a quasi-compact and quasi-separated morphism of schemes. For any parasitic adequate $\mathcal{O}_ T$-module on $(\mathit{Sch}/T)_\tau $ the pushforward $f_*\mathcal{F}$ and the higher direct images $R^ if_*\mathcal{F}$ are parasitic adequate $\mathcal{O}_ S$-modules on $(\mathit{Sch}/S)_\tau $.
Proof. We have already seen in Lemma 46.5.12 that these higher direct images are adequate. Hence it suffices to show that $(R^ if_*\mathcal{F})(U_ i) = 0$ for any $\tau $-covering $\{ U_ i \to S\} $ open. And $R^ if_*\mathcal{F}$ is parasitic by Descent, Lemma 35.12.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)