The Stacks project

Lemma 13.17.3. Let $\mathcal{A}$ be an abelian category. Let $\mathcal{B} \subset \mathcal{A}$ be a Serre subcategory. Suppose that the functor $v : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ has a left adjoint $u : \mathcal{A}/\mathcal{B} \to \mathcal{A}$ such that $vu \cong \text{id}$. Then

\[ D(\mathcal{A})/D_\mathcal {B}(\mathcal{A}) = D(\mathcal{A}/\mathcal{B}) \]

and similarly for the bounded versions.

Proof. The functor $D(v) : D(\mathcal{A}) \to D(\mathcal{A}/\mathcal{B})$ is essentially surjective by Lemma 13.17.2. For an object $X$ of $D(\mathcal{A})$ the adjunction mapping $c_ X : uvX \to X$ maps to an isomorphism in $D(\mathcal{A}/\mathcal{B})$ because $vuv \cong v$ by the assumption that $vu \cong \text{id}$. Thus in a distinguished triangle $(uvX, X, Z, c_ X, g, h)$ the object $Z$ is an object of $D_\mathcal {B}(\mathcal{A})$ as we see by looking at the long exact cohomology sequence. Hence $c_ X$ is an element of the multiplicative system used to define the quotient category $D(\mathcal{A})/D_\mathcal {B}(\mathcal{A})$. Thus $uvX \cong X$ in $D(\mathcal{A})/D_\mathcal {B}(\mathcal{A})$. For $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}))$ the map

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})/D_\mathcal {B}(\mathcal{A})}(X, Y) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A}/\mathcal{B})}(vX, vY) \]

is bijective because $u$ gives an inverse (by the remarks above). $\square$


Comments (0)

There are also:

  • 9 comment(s) on Section 13.17: Triangulated subcategories of the derived category

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06XM. Beware of the difference between the letter 'O' and the digit '0'.