The Stacks project

Lemma 59.30.1. Let $S$ be a scheme. All of the following sites have enough points $S_{affine, Zar}$, $S_{Zar}$, $S_{affine, {\acute{e}tale}}$, $S_{\acute{e}tale}$, $(\mathit{Sch}/S)_{Zar}$, $(\textit{Aff}/S)_{Zar}$, $(\mathit{Sch}/S)_{\acute{e}tale}$, $(\textit{Aff}/S)_{\acute{e}tale}$, $(\mathit{Sch}/S)_{smooth}$, $(\textit{Aff}/S)_{smooth}$, $(\mathit{Sch}/S)_{syntomic}$, $(\textit{Aff}/S)_{syntomic}$, $(\mathit{Sch}/S)_{fppf}$, and $(\textit{Aff}/S)_{fppf}$.

Proof. For each of the big sites the associated topos is equivalent to the topos defined by the site $(\textit{Aff}/S)_\tau $, see Topologies, Lemmas 34.3.10, 34.4.11, 34.5.9, 34.6.9, and 34.7.11. The result for the sites $(\textit{Aff}/S)_\tau $ follows immediately from Deligne's result Sites, Lemma 7.39.4.

The result for $S_{Zar}$ is clear. The result for $S_{affine, Zar}$ follows from Deligne's result. The result for $S_{\acute{e}tale}$ either follows from (the proof of) Theorem 59.29.10 or from Topologies, Lemma 34.4.12 and Deligne's result applied to $S_{affine, {\acute{e}tale}}$. $\square$


Comments (3)

Comment #2585 by Ingo Blechschmidt on

Deligne's referenced result requires that the site contains finite limits. But does contain a terminal object? I'm under the impression that is the category of -schemes which are affine as schemes over , not the category of -schemes whose structural morphism to is affine.

Comment #2586 by on

Yes, that is a mistake. Thanks very much. The point is that it locally has the right structure. I've fixed this here.

Comment #2587 by Ingo Blechschmidt on

Perfect, that covers it. Thank you!

There are also:

  • 2 comment(s) on Section 59.30: Points in other topologies

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06VX. Beware of the difference between the letter 'O' and the digit '0'.