Lemma 59.30.1. Let $S$ be a scheme. All of the following sites have enough points $S_{affine, Zar}$, $S_{Zar}$, $S_{affine, {\acute{e}tale}}$, $S_{\acute{e}tale}$, $(\mathit{Sch}/S)_{Zar}$, $(\textit{Aff}/S)_{Zar}$, $(\mathit{Sch}/S)_{\acute{e}tale}$, $(\textit{Aff}/S)_{\acute{e}tale}$, $(\mathit{Sch}/S)_{smooth}$, $(\textit{Aff}/S)_{smooth}$, $(\mathit{Sch}/S)_{syntomic}$, $(\textit{Aff}/S)_{syntomic}$, $(\mathit{Sch}/S)_{fppf}$, and $(\textit{Aff}/S)_{fppf}$.
Proof. For each of the big sites the associated topos is equivalent to the topos defined by the site $(\textit{Aff}/S)_\tau $, see Topologies, Lemmas 34.3.10, 34.4.11, 34.5.9, 34.6.9, and 34.7.11. The result for the sites $(\textit{Aff}/S)_\tau $ follows immediately from Deligne's result Sites, Lemma 7.39.4.
The result for $S_{Zar}$ is clear. The result for $S_{affine, Zar}$ follows from Deligne's result. The result for $S_{\acute{e}tale}$ either follows from (the proof of) Theorem 59.29.10 or from Topologies, Lemma 34.4.12 and Deligne's result applied to $S_{affine, {\acute{e}tale}}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #2585 by Ingo Blechschmidt on
Comment #2586 by Johan on
Comment #2587 by Ingo Blechschmidt on
There are also: