Lemma 46.3.17. Let $A \to A'$ be a ring map. If $F$ is an adequate functor on $\textit{Alg}_ A$, then its restriction $F'$ to $\textit{Alg}_{A'}$ is adequate too.
Proof. Choose an exact sequence $0 \to F \to \underline{M} \to \underline{N}$. Then $F'(B') = F(B') = \mathop{\mathrm{Ker}}(M \otimes _ A B' \to N \otimes _ A B')$. Since $M \otimes _ A B' = M \otimes _ A A' \otimes _{A'} B'$ and similarly for $N$ we see that $F'$ is the kernel of $\underline{M \otimes _ A A'} \to \underline{N \otimes _ A A'}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)