Definition 46.3.2. Let $A$ be a ring. A module-valued functor $F$ on $\textit{Alg}_ A$ is called
adequate if there exists a map of $A$-modules $M \to N$ such that $F$ is isomorphic to $\mathop{\mathrm{Ker}}(\underline{M} \to \underline{N})$.
linearly adequate if $F$ is isomorphic to the kernel of a map $\underline{A^{\oplus n}} \to \underline{A^{\oplus m}}$.
Comments (0)