The Stacks project

Lemma 8.11.6. Let $\mathcal{C}$ be a site. Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of stacks in groupoids over $\mathcal{C}$. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ and $\mathcal{Y}$ is a gerbe over $\mathcal{Z}$, then $\mathcal{X}$ is a gerbe over $\mathcal{Z}$.

Proof. Let us prove properties (2)(a) and (2)(b) of Lemma 8.11.3 for $\mathcal{X} \to \mathcal{Z}$.

Let $z$ be an object of $\mathcal{Z}$ lying over the object $U$ of $\mathcal{C}$. By assumption on $G$ there exists a covering $\{ U_ i \to U\} $ of $U$ and objects $y_ i \in \mathcal{Y}_{U_ i}$ such that $G(y_ i) \cong z|_{U_ i}$. By assumption on $F$ there exist coverings $\{ U_{ij} \to U_ i\} $ and objects $x_{ij} \in \mathcal{X}_{U_{ij}}$ such that $F(x_{ij}) \cong y_ i|_{U_{ij}}$. Then $\{ U_{ij} \to U\} $ is a covering of $\mathcal{C}$ and $(G \circ F)(x_{ij}) \cong z|_{U_{ij}}$. Thus (2)(a) holds.

Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, let $x_1, x_2$ be objects of $\mathcal{X}$ over $U$, and let $c : (G \circ F)(x_1) \to (G \circ F)(x_2)$ be a morphism in $\mathcal{Z}_ U$. By assumption on $G$ there exists a covering $\{ U_ i \to U\} $ of $U$ and morphisms $b_ i : F(x_1)|_{U_ i} \to F(x_2)|_{U_ i}$ in $\mathcal{Y}_{U_ i}$ such that $G(b_ i) = c|_{U_ i}$. By assumption on $F$ there exist coverings $\{ U_{ij} \to U_ i\} $ and morphisms $a_{ij} : x_1|_{U_{ij}} \to x_2|_{U_{ij}}$ in $\mathcal{X}_{U_{ij}}$ such that $F(a_{ij}) = b_ i|_{U_{ij}}$. Then $\{ U_{ij} \to U\} $ is a covering of $\mathcal{C}$ and $(G \circ F)(a_{ij}) = c|_{U_{ij}}$ as required in (2)(b). $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 8.11: Gerbes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06R3. Beware of the difference between the letter 'O' and the digit '0'.