The Stacks project

Lemma 74.10.3. Let $S$ be a scheme. Let $\tau \in \{ fppf, syntomic, smooth, {\acute{e}tale}\} $. Let $\mathcal{P}$ be a property of morphisms of algebraic spaces over $S$ which is $\tau $ local on the target. For any morphism of algebraic spaces $f : X \to Y$ over $S$ there exists a largest open subspace $W(f) \subset Y$ such that the restriction $X_{W(f)} \to W(f)$ has $\mathcal{P}$. Moreover,

  1. if $g : Y' \to Y$ is a morphism of algebraic spaces which is flat and locally of finite presentation, syntomic, smooth, or étale and the base change $f' : X_{Y'} \to Y'$ has $\mathcal{P}$, then $g$ factors through $W(f)$,

  2. if $g : Y' \to Y$ is flat and locally of finite presentation, syntomic, smooth, or étale, then $W(f') = g^{-1}(W(f))$, and

  3. if $\{ g_ i : Y_ i \to Y\} $ is a $\tau $-covering, then $g_ i^{-1}(W(f)) = W(f_ i)$, where $f_ i$ is the base change of $f$ by $Y_ i \to Y$.

Proof. Consider the union $W_{set} \subset |Y|$ of the images $g(|Y'|) \subset |Y|$ of morphisms $g : Y' \to Y$ with the properties:

  1. $g$ is flat and locally of finite presentation, syntomic, smooth, or étale, and

  2. the base change $Y' \times _{g, Y} X \to Y'$ has property $\mathcal{P}$.

Since such a morphism $g$ is open (see Morphisms of Spaces, Lemma 67.30.6) we see that $W_{set}$ is an open subset of $|Y|$. Denote $W \subset Y$ the open subspace whose underlying set of points is $W_{set}$, see Properties of Spaces, Lemma 66.4.8. Since $\mathcal{P}$ is local in the $\tau $ topology the restriction $X_ W \to W$ has property $\mathcal{P}$ because we are given a covering $\{ Y' \to W\} $ of $W$ such that the pullbacks have $\mathcal{P}$. This proves the existence and proves that $W(f)$ has property (1). To see property (2) note that $W(f') \supset g^{-1}(W(f))$ because $\mathcal{P}$ is stable under base change by flat and locally of finite presentation, syntomic, smooth, or étale morphisms, see Lemma 74.10.2. On the other hand, if $Y'' \subset Y'$ is an open such that $X_{Y''} \to Y''$ has property $\mathcal{P}$, then $Y'' \to Y$ factors through $W$ by construction, i.e., $Y'' \subset g^{-1}(W(f))$. This proves (2). Assertion (3) follows from (2) because each morphism $Y_ i \to Y$ is flat and locally of finite presentation, syntomic, smooth, or étale by our definition of a $\tau $-covering. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06R2. Beware of the difference between the letter 'O' and the digit '0'.