The Stacks project

Gerbes are algebraic if and only if the associated groups are flat and locally of finite presentation

Lemma 97.18.3. Let $S$ be a scheme and let $B$ be an algebraic space over $S$. Let $G$ be a group algebraic space over $B$. Endow $B$ with the trivial action of $G$. Then the quotient stack $[B/G]$ is an algebraic stack if and only if $G$ is flat and locally of finite presentation over $B$.

Proof. If $G$ is flat and locally of finite presentation over $B$, then $[B/G]$ is an algebraic stack by Theorem 97.17.2.

Conversely, assume that $[B/G]$ is an algebraic stack. By Lemma 97.18.2 and because the action is trivial, we see there exists an algebraic space $B'$ and a morphism $B' \to B$ such that (1) $B' \to B$ is a surjection of sheaves and (2) the projections

\[ B' \times _ B G \times _ B B' \to B' \]

are flat and locally of finite presentation. Note that the base change $B' \times _ B G \times _ B B' \to G \times _ B B'$ of $B' \to B$ is a surjection of sheaves also. Thus it follows from Descent on Spaces, Lemma 74.8.1 that the projection $G \times _ B B' \to B'$ is flat and locally of finite presentation. By (1) we can find an fppf covering $\{ B_ i \to B\} $ such that $B_ i \to B$ factors through $B' \to B$. Hence $G \times _ B B_ i \to B_ i$ is flat and locally of finite presentation by base change. By Descent on Spaces, Lemmas 74.11.13 and 74.11.10 we conclude that $G \to B$ is flat and locally of finite presentation. $\square$


Comments (1)

Comment #2757 by Ariyan Javanpeykar on

Slogan: Gerbes are algebraic if and only if the associated groups are flat and locally of finite presentation.

There are also:

  • 3 comment(s) on Section 97.18: When is a quotient stack algebraic?

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06PL. Beware of the difference between the letter 'O' and the digit '0'.