Lemma 8.11.2. Let $\mathcal{C}$ be a site. Let $\mathcal{S}_1$, $\mathcal{S}_2$ be categories over $\mathcal{C}$. Suppose that $\mathcal{S}_1$ and $\mathcal{S}_2$ are equivalent as categories over $\mathcal{C}$. Then $\mathcal{S}_1$ is a gerbe over $\mathcal{C}$ if and only if $\mathcal{S}_2$ is a gerbe over $\mathcal{C}$.
Proof. Assume $\mathcal{S}_1$ is a gerbe over $\mathcal{C}$. By Lemma 8.5.4 we see $\mathcal{S}_2$ is a stack in groupoids over $\mathcal{C}$. Let $F : \mathcal{S}_1 \to \mathcal{S}_2$, $G : \mathcal{S}_2 \to \mathcal{S}_1$ be equivalences of categories over $\mathcal{C}$. Given $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ we see that there exists a covering $\{ U_ i \to U\} $ such that $(\mathcal{S}_1)_{U_ i}$ is nonempty. Applying $F$ we see that $(\mathcal{S}_2)_{U_ i}$ is nonempty. Given $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and $x, y \in \mathop{\mathrm{Ob}}\nolimits ((\mathcal{S}_2)_ U)$ there exists a covering $\{ U_ i \to U\} $ in $\mathcal{C}$ such that $G(x)|_{U_ i} \cong G(y)|_{U_ i}$ in $(\mathcal{S}_1)_{U_ i}$. By Categories, Lemma 4.35.9 this implies $x|_{U_ i} \cong y|_{U_ i}$ in $(\mathcal{S}_2)_{U_ i}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: