Lemma 8.10.1. Let $\mathcal{C}$ be a site. Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category. Let $\text{Cov}(\mathcal{S})$ be the set of families $\{ x_ i \to x\} _{i \in I}$ of morphisms in $\mathcal{S}$ with fixed target such that (a) each $x_ i \to x$ is strongly cartesian, and (b) $\{ p(x_ i) \to p(x)\} _{i \in I}$ is a covering of $\mathcal{C}$. Then $(\mathcal{S}, \text{Cov}(\mathcal{S}))$ is a site.
Proof. We have to check the three conditions of Sites, Definition 7.6.2.
If $x \to y$ is an isomorphism of $\mathcal{S}$, then it is strongly cartesian by Categories, Lemma 4.33.2 and $p(x) \to p(y)$ is an isomorphism of $\mathcal{C}$. Thus $\{ p(x) \to p(y)\} $ is a covering of $\mathcal{C}$ whence $\{ x \to y\} \in \text{Cov}(\mathcal{S})$.
If $\{ x_ i \to x\} _{i\in I} \in \text{Cov}(\mathcal{S})$ and for each $i$ we have $\{ y_{ij} \to x_ i\} _{j\in J_ i} \in \text{Cov}(\mathcal{S})$, then each composition $y_{ij} \to x$ is strongly cartesian by Categories, Lemma 4.33.2 and $\{ p(y_{ij}) \to p(x)\} _{i \in I, j\in J_ i} \in \text{Cov}(\mathcal{C})$. Hence also $\{ y_{ij} \to x\} _{i \in I, j\in J_ i} \in \text{Cov}(\mathcal{S})$.
Suppose $\{ x_ i \to x\} _{i\in I}\in \text{Cov}(\mathcal{S})$ and $y \to x$ is a morphism of $\mathcal{S}$. As $\{ p(x_ i) \to p(x)\} $ is a covering of $\mathcal{C}$ we see that $p(x_ i) \times _{p(x)} p(y)$ exists. Hence Categories, Lemma 4.33.13 implies that $x_ i \times _ x y$ exists, that $p(x_ i \times _ x y) = p(x_ i) \times _{p(x)} p(y)$, and that $x_ i \times _ x y \to y$ is strongly cartesian. Since also $\{ p(x_ i) \times _{p(x)} p(y) \to p(y) \} _{i\in I} \in \text{Cov}(\mathcal{C})$ we conclude that $\{ x_ i \times _ x y \to y \} _{i\in I} \in \text{Cov}(\mathcal{S})$
This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8728 by Erhard Neher on
Comment #9349 by Stacks project on