Lemma 90.19.9. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda $ satisfying (RS). Let $x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k))$. Then $\text{Inf}_{x_0}(\mathcal{F})$ is equal as a set to $T_{\text{id}_{x_0}} \mathit{Aut}(x_0)$, and so has a natural $k$-vector space structure such that addition agrees with composition of automorphisms.
Proof. The equality of sets is as in the end of Remark 90.19.8 and the statement about the vector space structure follows from Lemma 90.19.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)