Remark 90.19.3. Up to canonical isomorphism $\text{Inf}_{x_0}(\mathcal{F})$ does not depend on the choice of pushforward $x_0 \to x_0'$ because any two pushforwards are canonically isomorphic. Moreover, if $y_0 \in \mathcal{F}(k)$ and $x_0 \cong y_0$ in $\mathcal{F}(k)$, then $\text{Inf}_{x_0}(\mathcal{F}) \cong \text{Inf}_{y_0}(\mathcal{F})$ where the isomorphism depends (only) on the choice of an isomorphism $x_0 \to y_0$. In particular, $\text{Aut}_ k(x_0)$ acts on $\text{Inf}_{x_0}(\mathcal{F})$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)