Lemma 90.17.5. Let $\mathcal{F}$ be a deformation category. Let $A' \to A$ be a surjective ring map in $\mathcal{C}_\Lambda $ whose kernel $I$ is annihilated by $\mathfrak m_{A'}$. Let $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A))$. If $\text{Lift}(x, A')$ is nonempty, then there is a free and transitive action of $T\mathcal{F} \otimes _ k I$ on $\text{Lift}(x, A')$.
Proof. Consider the ring map $g : A' \times _ A A' \to k[I]$ defined by the rule $g(a_1, a_2) = \overline{a_1} \oplus a_2 - a_1$ (compare with Lemma 90.10.8). There is an isomorphism
given by $(a_1, a_2) \mapsto (a_1, g(a_1, a_2))$. This isomorphism commutes with the projections to $A'$ on the first factor, and hence with the projections of $A' \times _ A A'$ and $A' \times _ k k[I]$ to $A$. Thus there is a bijection
By Remark 90.17.4 there is a bijection
There is a commutative diagram
Thus if we choose a pushforward $x \to x_0$ of $x$ along $A \to k$, we obtain by the end of Remark 90.17.4 a bijection
Composing (90.17.5.2), (90.17.5.1), and (90.17.5.3) we get a bijection
This bijection commutes with the projections on the first factors. By Remark 90.17.3 we see that $\text{Lift}(x_0, k[I]) = T\mathcal{F} \otimes _ k I$. If $\text{pr}_2$ is the second projection of $\text{Lift}(x, A') \times \text{Lift}(x, A')$, then we get a map
Unwinding all the above we see that $a(x' \to x, \theta )$ is the unique lift $x'' \to x$ such that $g_*(x', x'') = \theta $ in $\text{Lift}(x_0, k[I]) = T\mathcal{F} \otimes _ k I$. To see this is an action of $T\mathcal{F} \otimes _ k I$ on $\text{Lift}(x, A')$ we have to show the following: if $x', x'', x'''$ are lifts of $x$ and $g_*(x', x'') = \theta $, $g_*(x'', x''') = \theta '$, then $g_*(x', x''') = \theta + \theta '$. This follows from the commutative diagram
The action is free and transitive because $\Phi $ is bijective. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)