Lemma 90.11.13. Let $F, G: \mathcal{C} \to \textit{Sets}$ be functors satisfying the hypotheses of Lemma 90.11.8. Let $t : F \to G$ be a morphism of functors. For any $M \in \mathop{\mathrm{Ob}}\nolimits (\text{Mod}^{fg}_ R)$, the map $t_{R[M]}: F(R[M]) \to G(R[M])$ is a map of $R$-modules, where $F(R[M])$ and $G(R[M])$ are given the $R$-module structure from Lemma 90.11.8. In particular, $t_{R[\epsilon ]} : TF \to TG$ is a map of $R$-modules.
Proof. Follows from Lemma 90.11.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)