Lemma 74.14.3. Let $S$ be a scheme. Let $\tau \in \{ fpqc, \linebreak[0] fppf, \linebreak[0] syntomic, \linebreak[0] smooth, \linebreak[0] {\acute{e}tale}\} $. Suppose that $\mathcal{P}$ is a property of morphisms of schemes over $S$ which is étale local on the source-and-target. Denote $\mathcal{P}_{spaces}$ the corresponding property of morphisms of algebraic spaces over $S$, see Morphisms of Spaces, Definition 67.22.2. If $\mathcal{P}$ is local on the source for the $\tau $-topology, then $\mathcal{P}_{spaces}$ is local on the source for the $\tau $-topology.
Proof. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\{ X_ i \to X\} _{i \in I}$ be a $\tau $-covering of algebraic spaces. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to X \times _ Y V$. For each $i$ choose a scheme $U_ i$ and a surjective étale morphism $U_ i \to X_ i \times _ X U$.
Note that $\{ X_ i \times _ X U \to U\} _{i \in I}$ is a $\tau $-covering. Note that each $\{ U_ i \to X_ i \times _ X U\} $ is an étale covering, hence a $\tau $-covering. Hence $\{ U_ i \to U\} _{i \in I}$ is a $\tau $-covering of algebraic spaces over $S$. But since $U$ and each $U_ i$ is a scheme we see that $\{ U_ i \to U\} _{i \in I}$ is a $\tau $-covering of schemes over $S$.
Now we have
the first and last equivalence by the definition of $\mathcal{P}_{spaces}$ the middle equivalence because we assumed $\mathcal{P}$ is local on the source in the $\tau $-topology. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)