The Stacks project

Lemma 66.23.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $x \in |X|$ be a point. The following are equivalent

  1. for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ has a unique minimal prime,

  2. for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ there is a unique irreducible component of $U$ through $u$,

  3. for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ is unibranch,

  4. for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ is geometrically unibranch,

  5. $\mathcal{O}_{X, \overline{x}}$ has a unique minimal prime for any geometric point $\overline{x}$ lying over $x$.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible components of $U$ passing through $u$ are in $1$-$1$ correspondence with minimal primes of the local ring of $U$ at $u$. Let $a : U \to X$ and $u \in U$ be as in (1). Then $\mathcal{O}_{X, \overline{x}}$ is the strict henselization of $\mathcal{O}_{U, u}$ by Lemma 66.22.1. In particular (4) and (5) are equivalent by More on Algebra, Lemma 15.106.5. The equivalence of (2), (3), and (4) follows from More on Morphisms, Lemma 37.36.2. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 66.23: Local irreducibility

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06DK. Beware of the difference between the letter 'O' and the digit '0'.