Lemma 66.23.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $x \in |X|$ be a point. The following are equivalent
for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ has a unique minimal prime,
for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ there is a unique irreducible component of $U$ through $u$,
for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ is unibranch,
for any scheme $U$ and étale morphism $a : U \to X$ and $u \in U$ with $a(u) = x$ the local ring $\mathcal{O}_{U, u}$ is geometrically unibranch,
$\mathcal{O}_{X, \overline{x}}$ has a unique minimal prime for any geometric point $\overline{x}$ lying over $x$.
Comments (0)
There are also: