Lemma 76.48.12. Let $S$ be a scheme. Let $f : X \to Y$ be a local complete intersection morphism of algebraic spaces over $S$. Then $f$ is unramified if and only if $f$ is formally unramified and in this case the conormal sheaf $\mathcal{C}_{X/Y}$ is finite locally free on $X$.
Proof. This follows from the corresponding result for morphisms of schemes, see More on Morphisms, Lemma 37.62.22, by étale localization, see Lemma 76.15.11. (Note that in the situation of this lemma the morphism $V \to U$ is unramified and a local complete intersection morphism by definition.) $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)