Exercise 111.53.5. Chevalley's theorem and the Hilbert Nullstellensatz.
Let $\mathfrak p \subset \mathbf{Z}[x_1, \ldots , x_ n]$ be a maximal ideal. What does Chevalley's theorem imply about $\mathfrak p \cap \mathbf{Z}$?
In turn, what does the Hilbert Nullstellensatz imply about $\kappa (\mathfrak p)$?
Comments (0)