Lemma 15.30.12. Let $A$ be a ring. Let $f_1, \ldots , f_ n, g_1, \ldots , g_ m \in A$ be an $H_1$-regular sequence. Then the images $\overline{g}_1, \ldots , \overline{g}_ m$ in $A/(f_1, \ldots , f_ n)$ form an $H_1$-regular sequence.
Proof. Set $I = (f_1, \ldots , f_ n)$. We have to show that any relation $\sum _{j = 1, \ldots , m} \overline{a}_ j \overline{g}_ j$ in $A/I$ is a linear combination of trivial relations. Because $I = (f_1, \ldots , f_ n)$ we can lift this relation to a relation
in $A$. By assumption this relation in $A$ is a linear combination of trivial relations. Taking the image in $A/I$ we obtain what we want. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: