Lemma 31.22.9. Let
be a commutative diagram of morphisms of schemes. Assume $X \to S$ smooth, and $i$, $j$ immersions. If $j$ is a regular (resp. Koszul-regular, $H_1$-regular, quasi-regular) immersion, then so is $i$.
Lemma 31.22.9. Let
be a commutative diagram of morphisms of schemes. Assume $X \to S$ smooth, and $i$, $j$ immersions. If $j$ is a regular (resp. Koszul-regular, $H_1$-regular, quasi-regular) immersion, then so is $i$.
Proof. We can write $i$ as the composition
By Lemma 31.22.8 the first arrow is a regular immersion. The second arrow is a flat base change of $Y \to S$, hence is a regular (resp. Koszul-regular, $H_1$-regular, quasi-regular) immersion, see Lemma 31.21.4. We conclude by an application of Lemma 31.21.7. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)