The Stacks project

Lemma 31.20.5. Let $(X, \mathcal{O}_ X)$ be a locally ringed space. Let $\mathcal{J} \subset \mathcal{O}_ X$ be a sheaf of ideals. Let $x \in X$ and $f_1, \ldots , f_ r \in \mathcal{J}_ x$ whose images give a basis for the $\kappa (x)$-vector space $\mathcal{J}_ x/\mathfrak m_ x\mathcal{J}_ x$.

  1. If $\mathcal{J}$ is quasi-regular, then there exists an open neighbourhood such that $f_1, \ldots , f_ r \in \mathcal{O}_ X(U)$ form a quasi-regular sequence generating $\mathcal{J}|_ U$.

  2. If $\mathcal{J}$ is $H_1$-regular, then there exists an open neighbourhood such that $f_1, \ldots , f_ r \in \mathcal{O}_ X(U)$ form an $H_1$-regular sequence generating $\mathcal{J}|_ U$.

  3. If $\mathcal{J}$ is Koszul-regular, then there exists an open neighbourhood such that $f_1, \ldots , f_ r \in \mathcal{O}_ X(U)$ form an Koszul-regular sequence generating $\mathcal{J}|_ U$.

Proof. First assume that $\mathcal{J}$ is quasi-regular. We may choose an open neighbourhood $U \subset X$ of $x$ and a quasi-regular sequence $g_1, \ldots , g_ s \in \mathcal{O}_ X(U)$ which generates $\mathcal{J}|_ U$. Note that this implies that $\mathcal{J}/\mathcal{J}^2$ is free of rank $s$ over $\mathcal{O}_ U/\mathcal{J}|_ U$ (see Lemma 31.20.4 and its proof) and hence $r = s$. We may shrink $U$ and assume $f_1, \ldots , f_ r \in \mathcal{J}(U)$. Thus we may write

\[ f_ i = \sum a_{ij} g_ j \]

for some $a_{ij} \in \mathcal{O}_ X(U)$. By assumption the matrix $A = (a_{ij})$ maps to an invertible matrix over $\kappa (x)$. Hence, after shrinking $U$ once more, we may assume that $(a_{ij})$ is invertible. Thus we see that $f_1, \ldots , f_ r$ give a basis for $(\mathcal{J}/\mathcal{J}^2)|_ U$ which proves that $f_1, \ldots , f_ r$ is a quasi-regular sequence over $U$.

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and (3) are stronger than the assumption in (1), already assume that $f_1, \ldots , f_ r \in \mathcal{J}(U)$ and $f_ i = \sum a_{ij}g_ j$ with $(a_{ij})$ invertible as above, where now $g_1, \ldots , g_ r$ is a $H_1$-regular or Koszul-regular sequence. Since the Koszul complex on $f_1, \ldots , f_ r$ is isomorphic to the Koszul complex on $g_1, \ldots , g_ r$ via the matrix $(a_{ij})$ (see More on Algebra, Lemma 15.28.4) we conclude that $f_1, \ldots , f_ r$ is $H_1$-regular or Koszul-regular as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 067N. Beware of the difference between the letter 'O' and the digit '0'.