Lemma 15.81.17. Let $R$ be a Noetherian ring. Let $R \to A$ be a finite type ring map. Then
A complex of $A$-modules $K^\bullet $ is $m$-pseudo-coherent relative to $R$ if and only if $K^\bullet \in D^{-}(A)$ and $H^ i(K^\bullet )$ is a finite $A$-module for $i \geq m$.
A complex of $A$-modules $K^\bullet $ is pseudo-coherent relative to $R$ if and only if $K^\bullet \in D^{-}(A)$ and $H^ i(K^\bullet )$ is a finite $A$-module for all $i$.
An $A$-module is pseudo-coherent relative to $R$ if and only if it is finite.
Comments (0)