Lemma 15.28.12. Let $R$ be a ring. Let $f_1, \ldots , f_ r$, $g_1, \ldots , g_ s$ be elements of $R$. Then there is an isomorphism of Koszul complexes
Proof. Omitted. Hint: If $K_\bullet (R, f_1, \ldots , f_ r)$ is generated as a differential graded algebra by $x_1, \ldots , x_ r$ with $\text{d}(x_ i) = f_ i$ and $K_\bullet (R, g_1, \ldots , g_ s)$ is generated as a differential graded algebra by $y_1, \ldots , y_ s$ with $\text{d}(y_ j) = g_ j$, then we can think of $K_\bullet (R, f_1, \ldots , f_ r, g_1, \ldots , g_ s)$ as the differential graded algebra generated by the sequence of elements $x_1, \ldots , x_ r, y_1, \ldots , y_ s$ with $\text{d}(x_ i) = f_ i$ and $\text{d}(y_ j) = g_ j$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2774 by Darij Grinberg on
Comment #2883 by Johan on
There are also: