The Stacks project

Example 15.62.4. Let $K^\bullet , L^\bullet $ be objects of $D^{-}(R)$. Then there is a spectral sequence with

\[ E_2^{p, q} = H^ p(K^\bullet \otimes _ R^{\mathbf{L}} H^ q(L^\bullet )) \Rightarrow H^{p + q}(K^\bullet \otimes _ R^{\mathbf{L}} L^\bullet ) \]

and another spectral sequence with

\[ E_2^{p, q} = H^ p(H^ q(K^\bullet ) \otimes _ R^{\mathbf{L}} L^\bullet ) \Rightarrow H^{p + q}(K^\bullet \otimes _ R^{\mathbf{L}} L^\bullet ) \]

Both spectral sequences have $d_2^{p, q} : E_2^{p, q} \to E_2^{p + 2, q - 1}$. After replacing $K^\bullet $ and $L^\bullet $ by bounded above complexes of projectives, these spectral sequences are simply the two spectral sequences for computing the cohomology of $\text{Tot}(K^\bullet \otimes L^\bullet )$ discussed in Homology, Section 12.25.


Comments (2)

Comment #8706 by Yassin Mousa on

There is a tricky typo in Example 0662. The indices for the second spectral seqeunce are interchanged.

There are also:

  • 2 comment(s) on Section 15.62: Spectral sequences for Tor

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0662. Beware of the difference between the letter 'O' and the digit '0'.