Lemma 31.19.2. Let $i : Z \to X$ be an immersion. The conormal algebra of $i$ has the following properties:
Let $U \subset X$ be any open such that $i(Z)$ is a closed subset of $U$. Let $\mathcal{I} \subset \mathcal{O}_ U$ be the sheaf of ideals corresponding to the closed subscheme $i(Z) \subset U$. Then
\[ \mathcal{C}_{Z/X, *} = i^*\left(\bigoplus \nolimits _{n \geq 0} \mathcal{I}^ n\right) = i^{-1}\left( \bigoplus \nolimits _{n \geq 0} \mathcal{I}^ n/\mathcal{I}^{n + 1} \right) \]For any affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ such that $Z \cap U = \mathop{\mathrm{Spec}}(R/I)$ there is a canonical isomorphism $\Gamma (Z \cap U, \mathcal{C}_{Z/X, *}) = \bigoplus _{n \geq 0} I^ n/I^{n + 1}$.
Comments (0)