The Stacks project

Definition 27.6.2. Let $S$ be a scheme. A vector bundle $\pi : V \to S$ over $S$ is an affine morphism of schemes such that $\pi _*\mathcal{O}_ V$ is endowed with the structure of a graded $\mathcal{O}_ S$-algebra $\pi _*\mathcal{O}_ V = \bigoplus \nolimits _{n \geq 0} \mathcal{E}_ n$ such that $\mathcal{E}_0 = \mathcal{O}_ S$ and such that the maps

\[ \text{Sym}^ n(\mathcal{E}_1) \longrightarrow \mathcal{E}_ n \]

are isomorphisms for all $n \geq 0$. A morphism of vector bundles over $S$ is a morphism $f : V \to V'$ such that the induced map

\[ f^* : \pi '_*\mathcal{O}_{V'} \longrightarrow \pi _*\mathcal{O}_ V \]

is compatible with the given gradings.


Comments (0)

There are also:

  • 7 comment(s) on Section 27.6: Vector bundles

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 062M. Beware of the difference between the letter 'O' and the digit '0'.