The Stacks project

Lemma 76.19.10. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The following are equivalent:

  1. $f$ is formally smooth,

  2. for every diagram

    \[ \xymatrix{ U \ar[d] \ar[r]_\psi & V \ar[d] \\ X \ar[r]^ f & Y } \]

    where $U$ and $V$ are schemes and the vertical arrows are étale the morphism of schemes $\psi $ is formally smooth (as in More on Morphisms, Definition 37.6.1), and

  3. for one such diagram with surjective vertical arrows the morphism $\psi $ is formally smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 76.19.5. Assume (3). The proof that $f$ is formally smooth is entirely similar to the proof of (1) $\Rightarrow $ (2) of Lemma 76.19.6.

Consider a solid commutative diagram

\[ \xymatrix{ X \ar[d]_ f & T \ar[d]^ i \ar[l]^ a \\ Y & T' \ar[l] \ar@{-->}[lu] } \]

as in Definition 76.19.1. We will show the dotted arrow exists thereby proving that $f$ is formally smooth. Let $\mathcal{F}$ be the sheaf of sets on $(T')_{spaces, {\acute{e}tale}}$ of Lemma 76.17.4 as in the special case discussed in Remark 76.17.6. Let

\[ \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ T}(a^*\Omega _{X/Y}, \mathcal{C}_{T/T'}) \]

be the sheaf of $\mathcal{O}_ T$-modules on $T_{spaces, {\acute{e}tale}}$ with action $\mathcal{H} \times \mathcal{F} \to \mathcal{F}$ as in Lemma 76.17.5. The action $\mathcal{H} \times \mathcal{F} \to \mathcal{F}$ turns $\mathcal{F}$ into a pseudo $\mathcal{H}$-torsor, see Cohomology on Sites, Definition 21.4.1. Our goal is to show that $\mathcal{F}$ is a trivial $\mathcal{H}$-torsor. There are two steps: (I) To show that $\mathcal{F}$ is a torsor we have to show that $\mathcal{F}$ has étale locally a section. (II) To show that $\mathcal{F}$ is the trivial torsor it suffices to show that $H^1(T_{\acute{e}tale}, \mathcal{H}) = 0$, see Cohomology on Sites, Lemma 21.4.3.

First we prove (I). To see this consider a diagram (which exists because we are assuming (3))

\[ \xymatrix{ U \ar[d] \ar[r]_\psi & V \ar[d] \\ X \ar[r]^ f & Y } \]

where $U$ and $V$ are schemes, the vertical arrows are étale and surjective, and $\psi $ is formally smooth. By Lemma 76.13.5 the morphism $V \to Y$ is formally étale. Thus by Lemma 76.13.3 the composition $U \to Y$ is formally smooth. Then (I) follows from Lemma 76.13.6 part (4).

Finally we prove (II). By Lemma 76.19.8 we see that $\Omega _{U/V}$ locally projective. Hence $\Omega _{X/Y}$ is locally projective, see Descent on Spaces, Lemma 74.6.5. Hence $a^*\Omega _{X/Y}$ is locally projective, see Properties of Spaces, Lemma 66.31.3. Hence

\[ H^1(T_{\acute{e}tale}, \mathcal{H}) = H^1(T_{\acute{e}tale}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ T}(a^*\Omega _{X/Y}, \mathcal{C}_{T/T'}) = 0 \]

by Lemma 76.19.9 as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 061K. Beware of the difference between the letter 'O' and the digit '0'.