Lemma 12.32.1. Let $I$ be a set. For $i \in I$ let $L_ i \to M_ i \to N_ i$ be a complex of abelian groups. Let $H_ i = \mathop{\mathrm{Ker}}(M_ i \to N_ i)/\mathop{\mathrm{Im}}(L_ i \to M_ i)$ be the cohomology. Then
\[ \prod L_ i \to \prod M_ i \to \prod N_ i \]
is a complex of abelian groups with homology $\prod H_ i$.
Comments (0)