Lemma 76.7.7. Let $S$ be a scheme. Let
\[ \xymatrix{ X'' \ar[d] \ar[r]_ g & X' \ar[d] \ar[r]_ f & X \ar[d] \\ Y'' \ar[r] & Y' \ar[r] & Y } \]
be a commutative diagram of algebraic spaces over $S$. Then we have
\[ c_{f \circ g} = c_ g \circ g^* c_ f \]
as maps $(f \circ g)^*\Omega _{X/Y} \to \Omega _{X''/Y''}$.
Comments (0)