The Stacks project

Proposition 97.11.5. Let $S$ be a scheme. Let $X \to Z \to B$ be morphisms of algebraic spaces over $S$. If $Z \to B$ is finite locally free then $\text{Res}_{Z/B}(X)$ is an algebraic space.

Proof. By Proposition 97.10.4 the functors $\mathit{Mor}_ B(Z, X)$ and $\mathit{Mor}_ B(Z, Z)$ are algebraic spaces. Hence this follows from the cartesian diagram of Lemma 97.11.4 and the fact that fibre products of algebraic spaces exist and are given by the fibre product in the underlying category of sheaves of sets (see Spaces, Lemma 65.7.2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05YF. Beware of the difference between the letter 'O' and the digit '0'.