Lemma 97.9.1. Let $Z \to U$ be a finite morphism of schemes. Let $W$ be an algebraic space and let $W \to Z$ be a surjective étale morphism. Then there exists a surjective étale morphism $U' \to U$ and a section
of the morphism $W_{U'} \to Z_{U'}$.
Lemma 97.9.1. Let $Z \to U$ be a finite morphism of schemes. Let $W$ be an algebraic space and let $W \to Z$ be a surjective étale morphism. Then there exists a surjective étale morphism $U' \to U$ and a section
of the morphism $W_{U'} \to Z_{U'}$.
Proof. We may choose a separated scheme $W'$ and a surjective étale morphism $W' \to W$. Hence after replacing $W$ by $W'$ we may assume that $W$ is a separated scheme. Write $f : W \to Z$ and $\pi : Z \to U$. Note that $f \circ \pi : W \to U$ is separated as $W$ is separated (see Schemes, Lemma 26.21.13). Let $u \in U$ be a point. Clearly it suffices to find an étale neighbourhood $(U', u')$ of $(U, u)$ such that a section $\sigma $ exists over $U'$. Let $z_1, \ldots , z_ r$ be the points of $Z$ lying above $u$. For each $i$ choose a point $w_ i \in W$ which maps to $z_ i$. We may pick an étale neighbourhood $(U', u') \to (U, u)$ such that the conclusions of More on Morphisms, Lemma 37.41.5 hold for both $Z \to U$ and the points $z_1, \ldots , z_ r$ and $W \to U$ and the points $w_1, \ldots , w_ r$. Hence, after replacing $(U, u)$ by $(U', u')$ and relabeling, we may assume that all the field extensions $\kappa (z_ i)/\kappa (u)$ and $\kappa (w_ i)/\kappa (u)$ are purely inseparable, and moreover that there exist disjoint union decompositions
by open and closed subschemes with $z_ i \in V_ i$, $w_ i \in W_ i$ and $V_ i \to U$, $W_ i \to U$ finite. After replacing $U$ by $U \setminus \pi (A)$ we may assume that $A = \emptyset $, i.e., $Z = V_1 \amalg \ldots \amalg V_ r$. After replacing $W_ i$ by $W_ i \cap f^{-1}(V_ i)$ and $B$ by $B \cup \bigcup W_ i \cap f^{-1}(Z \setminus V_ i)$ we may assume that $f$ maps $W_ i$ into $V_ i$. Then $f_ i = f|_{W_ i} : W_ i \to V_ i$ is a morphism of schemes finite over $U$, hence finite (see Morphisms, Lemma 29.44.14). It is also étale (by assumption), $f_ i^{-1}(\{ z_ i\} ) = w_ i$, and induces an isomorphism of residue fields $\kappa (z_ i) = \kappa (w_ i)$ (because both are purely inseparable extensions of $\kappa (u)$ and $\kappa (w_ i)/\kappa (z_ i)$ is separable as $f$ is étale). Hence by Étale Morphisms, Lemma 41.14.2 we see that $f_ i$ is an isomorphism in a neighbourhood $V_ i'$ of $z_ i$. Since $\pi : Z \to U$ is closed, after shrinking $U$, we may assume that $W_ i \to V_ i$ is an isomorphism. This proves the lemma. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (9)
Comment #4923 by Robot0079 on
Comment #5191 by Johan on
Comment #6308 by Robot0079 on
Comment #6309 by Robot0079 on
Comment #6310 by Laurent Moret-Bailly on
Comment #6311 by Laurent Moret-Bailly on
Comment #6312 by Robot0079 on
Comment #6314 by Johan on
Comment #6420 by Johan on