Lemma 110.34.2. There exists a ring $R$ and an ideal $I$ such that $I$ is projective as an $R$-module but not locally free as an $R$-module.
Proof. See above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: