Lemma 95.18.1. The category $\mathcal{H}_ d(\mathcal{X}/\mathcal{Y})$ endowed with the functor $p$ above defines a stack in groupoids over $(\mathit{Sch}/S)_{fppf}$.
Proof. As usual, the hardest part is to show descent for objects. To see this let $\{ U_ i \to U\} $ be a covering of $(\mathit{Sch}/S)_{fppf}$. Let $\xi _ i = (U_ i, Z_ i, y_ i, x_ i, \alpha _ i)$ be an object of $\mathcal{H}_ d(\mathcal{X}/\mathcal{Y})$ lying over $U_ i$, and let $\varphi _{ij} : \text{pr}_0^*\xi _ i \to \text{pr}_1^*\xi _ j$ be a descent datum. First, observe that $\varphi _{ij}$ induces a descent datum $(Z_ i/U_ i, \varphi _{ij})$ which is effective by Descent, Lemma 35.37.1 This produces a scheme $Z/U$ which is finite locally free of degree $d$ by Descent, Lemma 35.23.30. From now on we identify $Z_ i$ with $Z \times _ U U_ i$. Next, the objects $y_ i$ in the fibre categories $\mathcal{Y}_{U_ i}$ descend to an object $y$ in $\mathcal{Y}_ U$ because $\mathcal{Y}$ is a stack in groupoids. Similarly the objects $x_ i$ in the fibre categories $\mathcal{X}_{Z_ i}$ descend to an object $x$ in $\mathcal{X}_ Z$ because $\mathcal{X}$ is a stack in groupoids. Finally, the given isomorphisms
glue to a morphism $\alpha : y|_ Z \to F(x)$ as the $\mathcal{Y}$ is a stack and hence $\mathit{Isom}_\mathcal {Y}(y|_ Z, F(x))$ is a sheaf. Details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: