Lemma 65.5.9. Let $S$ be a scheme. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$ be sheaves. Let $a : F \to G$ be representable, flat, locally of finite presentation, and surjective. Then $a : F \to G$ is surjective as a map of sheaves.
Proof. Let $T$ be a scheme over $S$ and let $g : T \to G$ be a $T$-valued point of $G$. By assumption $T' = F \times _ G T$ is (representable by) a scheme and the morphism $T' \to T$ is a flat, locally of finite presentation, and surjective. Hence $\{ T' \to T\} $ is an fppf covering such that $g|_{T'} \in G(T')$ comes from an element of $F(T')$, namely the map $T' \to F$. This proves the map is surjective as a map of sheaves, see Sites, Definition 7.11.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)