The Stacks project

Lemma 4.17.5. Let $F : \mathcal{I} \to \mathcal{I}'$ be a functor. Assume

  1. the fibre categories (see Definition 4.32.2) of $\mathcal{I}$ over $\mathcal{I}'$ are all connected, and

  2. for every morphism $\alpha ' : x' \to y'$ in $\mathcal{I}'$ there exists a morphism $\alpha : x \to y$ in $\mathcal{I}$ such that $F(\alpha ) = \alpha '$.

Then for every diagram $M : \mathcal{I}' \to \mathcal{C}$ the colimit $\mathop{\mathrm{colim}}\nolimits _\mathcal {I} M \circ F$ exists if and only if $\mathop{\mathrm{colim}}\nolimits _{\mathcal{I}'} M$ exists and if so these colimits agree.

Proof. One can prove this by showing that $\mathcal{I}$ is cofinal in $\mathcal{I}'$ and applying Lemma 4.17.2. But we can also prove it directly as follows. It suffices to show that for any object $T$ of $\mathcal{C}$ we have

\[ \mathop{\mathrm{lim}}\nolimits _{\mathcal{I}^{opp}} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(M_{F(i)}, T) = \mathop{\mathrm{lim}}\nolimits _{(\mathcal{I}')^{opp}} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(M_{i'}, T) \]

If $(g_{i'})_{i' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}')}$ is an element of the right hand side, then setting $f_ i = g_{F(i)}$ we obtain an element $(f_ i)_{i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})}$ of the left hand side. Conversely, let $(f_ i)_{i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})}$ be an element of the left hand side. Note that on each (connected) fibre category $\mathcal{I}_{i'}$ the functor $M \circ F$ is constant with value $M_{i'}$. Hence the morphisms $f_ i$ for $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ with $F(i) = i'$ are all the same and determine a well defined morphism $g_{i'} : M_{i'} \to T$. By assumption (2) the collection $(g_{i'})_{i' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}')}$ defines an element of the right hand side. $\square$


Comments (2)

Comment #3225 by Fan on

I probably missed something in this Lemma, but what happens if is not surjective, i.e., there are objects not equal to any ? In that case, knowing

helps in knowing ?

There are also:

  • 3 comment(s) on Section 4.17: Cofinal and initial categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05US. Beware of the difference between the letter 'O' and the digit '0'.