Lemma 100.9.15. Let $\mathcal X$ be an algebraic stack and $\mathcal X' \subset \mathcal X$ a quasi-compact open substack. Suppose that we have a collection of open substacks $\mathcal{X}_ i \subset \mathcal X$ indexed by $i \in I$ such that $\mathcal{X}' \subset \bigcup _{i \in I} \mathcal{X}_ i$, where we define the union as in Lemma 100.9.14. Then there exists a finite subset $I' \subset I$ such that $\mathcal{X}' \subset \bigcup _{i \in I'} \mathcal{X}_ i$.
Proof. Since $\mathcal X$ is algebraic, there exists a scheme $U$ with a surjective smooth morphism $U \to \mathcal X$. Let $U_ i \subset U$ be the open subscheme representing $\mathcal{X}_ i \times _{\mathcal X} U$ and $U' \subset U$ the open subscheme representing $\mathcal{X}' \times _{\mathcal X} U$. By hypothesis, $U'\subset \bigcup _{i\in I} U_ i$. From the proof of Lemma 100.6.2, there is a quasi-compact open $V \subset U'$ such that $V \to \mathcal{X}'$ is a surjective smooth morphism. Therefore there exists a finite subset $I' \subset I$ such that $V \subset \bigcup _{i \in I'} U_ i$. We claim that $\mathcal{X}' \subset \bigcup _{i \in I'} \mathcal{X}_ i$. Take $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}'_ T)$ for $T \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$. Since $\mathcal{X}' \to \mathcal{X}$ is a monomorphism, we have cartesian squares
By base change, $V \times _{\mathcal X} T \to T$ is surjective. Therefore $\bigcup _{i \in I'} U_ i \times _{\mathcal X} T \to T$ is also surjective. Let $T_ i \subset T$ be the open subscheme representing $\mathcal{X}_ i \times _{\mathcal X} T$. By a formal argument, we have a Cartesian square
where the vertical arrows are surjective by base change. Since $U_ i \times _{\mathcal{X}_ i} T_ i \simeq U_ i \times _{\mathcal X} T$, we find that $\bigcup _{i \in I'} T_ i = T$. Hence $x$ is an object of $(\bigcup _{i\in I'} \mathcal{X}_ i)_ T$ by definition of the union. Observe that the inclusion $\mathcal{X}' \subset \bigcup _{i \in I'} \mathcal{X}_ i$ is automatically an open substack. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: