The Stacks project

13.25 Right derived functors via resolution functors

The content of the following lemma is that we can simply define $RF(K^\bullet ) = F(j(K^\bullet ))$ if we are given a resolution functor $j$.

Lemma 13.25.1. Let $\mathcal{A}$ be an abelian category with enough injectives Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor into an abelian category. Let $(i, j)$ be a resolution functor, see Definition 13.23.2. The right derived functor $RF$ of $F$ fits into the following $2$-commutative diagram

\[ \xymatrix{ D^{+}(\mathcal{A}) \ar[rd]_{RF} \ar[rr]^{j'} & & K^{+}(\mathcal{I}) \ar[ld]^ F \\ & D^{+}(\mathcal{B}) } \]

where $j'$ is the functor from Lemma 13.23.6.

Proof. By Lemma 13.20.1 we have $RF(K^\bullet ) = F(j(K^\bullet ))$. $\square$

Remark 13.25.2. In the situation of Lemma 13.25.1 we see that we have actually lifted the right derived functor to an exact functor $F \circ j' : D^{+}(\mathcal{A}) \to K^{+}(\mathcal{B})$. It is occasionally useful to use such a factorization.


Comments (1)

Comment #9525 by on

I don't know if it's any worth, but one can generalize 13.25.1 by replacing in its statement “let be an additive functor into an abelian category” by “let be an exact functor into a triangulated category” and by replacing by in the statement's commutative triangle. The proof is the same.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05TM. Beware of the difference between the letter 'O' and the digit '0'.