Lemma 13.15.5. Let $\mathcal{A}$ be an abelian category. Let $\mathcal{I} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ be a subset containing $0$ such that every object of $\mathcal{A}$ is a subobject of an element of $\mathcal{I}$. Let $a \in \mathbf{Z}$.
Given $K^\bullet $ with $K^ n = 0$ for $n < a$ there exists a quasi-isomorphism $K^\bullet \to I^\bullet $ with $K^ n \to I^ n$ injective and $I^ n \in \mathcal{I}$ for all $n$ and $I^ n = 0$ for $n < a$,
Given $K^\bullet $ with $H^ n(K^\bullet ) = 0$ for $n < a$ there exists a quasi-isomorphism $K^\bullet \to I^\bullet $ with $I^ n \in \mathcal{I}$ and $I^ n = 0$ for $n < a$.
Comments (0)
There are also: