Lemma 13.14.12. Assumptions and notation as in Situation 13.14.1. Let $(X, Y, Z, f, g, h)$ be a distinguished triangle of $\mathcal{D}$. If $X, Y$ compute $RF$ then so does $Z$. Similar for $LF$.
Proof. By Lemma 13.14.6 we know that $RF$ is defined at $Z$ and that $RF$ applied to the triangle produces a distinguished triangle. Consider the morphism of distinguished triangles
\[ \xymatrix{ (F(X), F(Y), F(Z), F(f), F(g), F(h)) \ar[d] \\ (RF(X), RF(Y), RF(Z), RF(f), RF(g), RF(h)) } \]
Two out of three maps are isomorphisms, hence so is the third. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: