The Stacks project

Lemma 13.11.6. Let $\mathcal{A}$ be an abelian category. The subcategories $\text{Ac}^{+}(\mathcal{A})$, $\text{Ac}^{-}(\mathcal{A})$, resp. $\text{Ac}^ b(\mathcal{A})$ are strictly full saturated triangulated subcategories of $K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, resp. $K^ b(\mathcal{A})$. The corresponding saturated multiplicative systems (see Lemma 13.6.10) are the sets $\text{Qis}^{+}(\mathcal{A})$, $\text{Qis}^{-}(\mathcal{A})$, resp. $\text{Qis}^ b(\mathcal{A})$.

  1. The kernel of the functor $K^{+}(\mathcal{A}) \to D^{+}(\mathcal{A})$ is $\text{Ac}^{+}(\mathcal{A})$ and this induces an equivalence of triangulated categories

    \[ K^{+}(\mathcal{A})/\text{Ac}^{+}(\mathcal{A}) = \text{Qis}^{+}(\mathcal{A})^{-1}K^{+}(\mathcal{A}) \longrightarrow D^{+}(\mathcal{A}) \]
  2. The kernel of the functor $K^{-}(\mathcal{A}) \to D^{-}(\mathcal{A})$ is $\text{Ac}^{-}(\mathcal{A})$ and this induces an equivalence of triangulated categories

    \[ K^{-}(\mathcal{A})/\text{Ac}^{-}(\mathcal{A}) = \text{Qis}^{-}(\mathcal{A})^{-1}K^{-}(\mathcal{A}) \longrightarrow D^{-}(\mathcal{A}) \]
  3. The kernel of the functor $K^ b(\mathcal{A}) \to D^ b(\mathcal{A})$ is $\text{Ac}^ b(\mathcal{A})$ and this induces an equivalence of triangulated categories

    \[ K^ b(\mathcal{A})/\text{Ac}^ b(\mathcal{A}) = \text{Qis}^ b(\mathcal{A})^{-1}K^ b(\mathcal{A}) \longrightarrow D^ b(\mathcal{A}) \]

Proof. The initial statements follow from Lemma 13.6.11 by considering the restriction of the homological functor $H^0$. The statement on kernels in (1), (2), (3) is a consequence of the definitions in each case. Each of the functors is essentially surjective by Lemma 13.11.5. To finish the proof we have to show the functors are fully faithful. We first do this for the bounded below version.

Suppose that $K^\bullet , L^\bullet $ are bounded below complexes. A morphism between these in $D(\mathcal{A})$ is of the form $s^{-1}f$ for a pair $f : K^\bullet \to (L')^\bullet $, $s : L^\bullet \to (L')^\bullet $ where $s$ is a quasi-isomorphism. This implies that $(L')^\bullet $ has cohomology bounded below. Hence by Lemma 13.11.5 we can choose a quasi-isomorphism $s' : (L')^\bullet \to (L'')^\bullet $ with $(L'')^\bullet $ bounded below. Then the pair $(s' \circ f, s' \circ s)$ defines a morphism in $\text{Qis}^{+}(\mathcal{A})^{-1}K^{+}(\mathcal{A})$. Hence the functor is “full”. Finally, suppose that the pair $f : K^\bullet \to (L')^\bullet $, $s : L^\bullet \to (L')^\bullet $ defines a morphism in $\text{Qis}^{+}(\mathcal{A})^{-1}K^{+}(\mathcal{A})$ which is zero in $D(\mathcal{A})$. This means that there exists a quasi-isomorphism $s' : (L')^\bullet \to (L'')^\bullet $ such that $s' \circ f = 0$. Using Lemma 13.11.5 once more we obtain a quasi-isomorphism $s'' : (L'')^\bullet \to (L''')^\bullet $ with $(L''')^\bullet $ bounded below. Thus we see that $s'' \circ s' \circ f = 0$ which implies that $s^{-1}f$ is zero in $\text{Qis}^{+}(\mathcal{A})^{-1}K^{+}(\mathcal{A})$. This finishes the proof that the functor in (1) is an equivalence.

The proof of (2) is dual to the proof of (1). To prove (3) we may use the result of (2). Hence it suffices to prove that the functor $\text{Qis}^ b(\mathcal{A})^{-1}K^ b(\mathcal{A}) \to \text{Qis}^{-}(\mathcal{A})^{-1}K^{-}(\mathcal{A})$ is fully faithful. The argument given in the previous paragraph applies directly to show this where we consistently work with complexes which are already bounded above. $\square$


Comments (2)

Comment #8372 by on

Typo: the first sentence of the second paragraph should be "suppose are bounded below complexes". Also, in the first paragraph I would write "the statement on kernels in (1), (2), (3) is a consequence of the definitions in each case plus Homology, Lemma 12.8.3". Finally, in the second paragraph, I would invoke Lemma 4.27.6 to justify the sentence "this means that there exists a quasi-isomorphism such that ". (An alternative to invocation of Lemma 4.27.6 would be creating a corollary of 4.27.6 in Section 12.8 that states "if is a preadditive category and is a LMS in , then for a morphism in , the morphism is zero if and only if there is in with " and then referring to it.)

Comment #8978 by on

Thanks for the typo which is fixed here. I think that looking at Lemma 13.6.11 whose statement refers to Lemma 13.6.10 we do see that the kernel of each localization functor is the set of acyclic complexes. I think the reader should at this point be sufficiently familiar with computations in localizations of categories to be able to see why such an exists, but yes I agree that this can be done using Lemma 4.27.6.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05RW. Beware of the difference between the letter 'O' and the digit '0'.