Lemma 13.10.5. Let $\mathcal{A}$ be an additive category. The categories $K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, and $K^ b(\mathcal{A})$ are full triangulated subcategories of $K(\mathcal{A})$.
Proof. Each of the categories mentioned is a full additive subcategory. We use the criterion of Lemma 13.4.16 to show that they are triangulated subcategories. It is clear that each of the categories $K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, and $K^ b(\mathcal{A})$ is preserved under the shift functors $[1], [-1]$. Finally, suppose that $f : A^\bullet \to B^\bullet $ is a morphism in $K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, or $K^ b(\mathcal{A})$. Then $(A^\bullet , B^\bullet , C(f)^\bullet , f, i, -p)$ is a distinguished triangle of $K(\mathcal{A})$ with $C(f)^\bullet \in K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, or $K^ b(\mathcal{A})$ as is clear from the construction of the cone. Thus the lemma is proved. (Alternatively, $K^\bullet \to L^\bullet $ is isomorphic to an termwise split injection of complexes in $K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$, or $K^ b(\mathcal{A})$, see Lemma 13.9.6 and then one can directly take the associated distinguished triangle.) $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #1706 by Keenan Kidwell on
Comment #1751 by Johan on