Lemma 4.27.9. Let $\mathcal{C}$ be a category and let $S$ be a left multiplicative system of morphisms of $\mathcal{C}$. The localization functor $Q : \mathcal{C} \to S^{-1}\mathcal{C}$ commutes with finite colimits.
Proof. Let $\mathcal{I}$ be a finite category and let $\mathcal{I} \to \mathcal{C}$, $i \mapsto X_ i$ be a functor whose colimit exists. Then using (4.27.7.1), the fact that $Y/S$ is filtered, and Lemma 4.19.2 we have
and this isomorphism commutes with the projections from both sides to the set $\mathop{\mathrm{Mor}}\nolimits _{S^{-1}\mathcal{C}}(Q(X_ j), Q(Y))$ for each $j \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$. Thus, $Q(\mathop{\mathrm{colim}}\nolimits X_ i)$ satisfies the universal property for the colimit of the functor $i \mapsto Q(X_ i)$; hence, it is this colimit, as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: