Lemma 12.5.14. Let $\mathcal{A}$ be an abelian category.
If $x \to y$ is surjective, then for every $z \to y$ the projection $x \times _ y z \to z$ is surjective.
If $x \to y$ is injective, then for every $x \to z$ the morphism $z \to z \amalg _ x y$ is injective.
Comments (0)
There are also: