Definition 17.17.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. An $\mathcal{O}_ X$-module $\mathcal{F}$ is flat if the functor
is exact.
We can define flat modules exactly as in the case of modules over rings.
Definition 17.17.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. An $\mathcal{O}_ X$-module $\mathcal{F}$ is flat if the functor is exact.
We can characterize flatness by looking at the stalks.
Lemma 17.17.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. An $\mathcal{O}_ X$-module $\mathcal{F}$ is flat if and only if the stalk $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module for all $x \in X$.
Proof. Assume $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module for all $x \in X$. In this case, if $\mathcal{G} \to \mathcal{H} \to \mathcal{K}$ is exact, then also $\mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{H} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{K} \otimes _{\mathcal{O}_ X} \mathcal{F}$ is exact because we can check exactness at stalks and because tensor product commutes with taking stalks, see Lemma 17.16.1. Conversely, suppose that $\mathcal{F}$ is flat, and let $x \in X$. Consider the skyscraper sheaves $i_{x, *} M$ where $M$ is a $\mathcal{O}_{X, x}$-module. Note that
again by Lemma 17.16.1. Since $i_{x, *}$ is exact, we see that the fact that $\mathcal{F}$ is flat implies that $M \mapsto M \otimes _{\mathcal{O}_{X, x}} \mathcal{F}_ x$ is exact. Hence $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module. $\square$
Thus the following definition makes sense.
Definition 17.17.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $x \in X$. An $\mathcal{O}_ X$-module $\mathcal{F}$ is flat at $x$ if $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module.
Hence we see that $\mathcal{F}$ is a flat $\mathcal{O}_ X$-module if and only if it is flat at every point.
Lemma 17.17.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. A filtered colimit of flat $\mathcal{O}_ X$-modules is flat. A direct sum of flat $\mathcal{O}_ X$-modules is flat.
Proof. This follows from Lemma 17.16.5, Lemma 17.16.1, Algebra, Lemma 10.8.8, and the fact that we can check exactness at stalks. $\square$
Lemma 17.17.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $U \subset X$ be open. The sheaf $j_{U!}\mathcal{O}_ U$ is a flat sheaf of $\mathcal{O}_ X$-modules.
Proof. The stalks of $j_{U!}\mathcal{O}_ U$ are either zero or equal to $\mathcal{O}_{X, x}$. Apply Lemma 17.17.2. $\square$
Lemma 17.17.6. Let $(X, \mathcal{O}_ X)$ be a ringed space.
Any sheaf of $\mathcal{O}_ X$-modules is a quotient of a direct sum $\bigoplus j_{U_ i!}\mathcal{O}_{U_ i}$.
Any $\mathcal{O}_ X$-module is a quotient of a flat $\mathcal{O}_ X$-module.
Proof. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. For every open $U \subset X$ and every $s \in \mathcal{F}(U)$ we get a morphism $j_{U!}\mathcal{O}_ U \to \mathcal{F}$, namely the adjoint to the morphism $\mathcal{O}_ U \to \mathcal{F}|_ U$, $1 \mapsto s$. Clearly the map
is surjective, and the source is flat by combining Lemmas 17.17.4 and 17.17.5. $\square$
Lemma 17.17.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let be a short exact sequence of $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is flat. Then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the sequence is exact.
Proof. Using that $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module for every $x \in X$ and that exactness can be checked on stalks, this follows from Algebra, Lemma 10.39.12. $\square$
Lemma 17.17.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let be a short exact sequence of $\mathcal{O}_ X$-modules.
If $\mathcal{F}_2$ and $\mathcal{F}_0$ are flat so is $\mathcal{F}_1$.
If $\mathcal{F}_1$ and $\mathcal{F}_0$ are flat so is $\mathcal{F}_2$.
Proof. Since exactness and flatness may be checked at the level of stalks this follows from Algebra, Lemma 10.39.13. $\square$
Lemma 17.17.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let be an exact complex of $\mathcal{O}_ X$-modules. If $\mathcal{Q}$ and all $\mathcal{F}_ i$ are flat $\mathcal{O}_ X$-modules, then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the complex is exact also.
Proof. Follows from Lemma 17.17.7 by splitting the complex into short exact sequences and using Lemma 17.17.8 to prove inductively that $\mathop{\mathrm{Im}}(\mathcal{F}_{i + 1} \to \mathcal{F}_ i)$ is flat. $\square$
The following lemma gives one direction of the equational criterion of flatness (Algebra, Lemma 10.39.11).
Lemma 17.17.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a flat $\mathcal{O}_ X$-module. Let $U \subset X$ be open and let be a complex of $\mathcal{O}_ U$-modules. For every $x \in U$ there exists an open neighbourhood $V \subset U$ of $x$ and a factorization of $(s_1, \ldots , s_ n)|_ V$ such that $A \circ (f_1, \ldots , f_ n)|_ V = 0$.
Proof. Let $\mathcal{I} \subset \mathcal{O}_ U$ be the sheaf of ideals generated by $f_1, \ldots , f_ n$. Then $\sum f_ i \otimes s_ i$ is a section of $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U$ which maps to zero in $\mathcal{F}|_ U$. As $\mathcal{F}|_ U$ is flat the map $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U \to \mathcal{F}|_ U$ is injective. Since $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U$ is the sheaf associated to the presheaf tensor product, we see there exists an open neighbourhood $V \subset U$ of $x$ such that $\sum f_ i|_ V \otimes s_ i|_ V$ is zero in $\mathcal{I}(V) \otimes _{\mathcal{O}(V)} \mathcal{F}(V)$. Unwinding the definitions using Algebra, Lemma 10.107.10 we find $t_1, \ldots , t_ m \in \mathcal{F}(V)$ and $a_{ij} \in \mathcal{O}(V)$ such that $\sum a_{ij}f_ i|_ V = 0$ and $s_ i|_ V = \sum a_{ij}t_ j$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)