Lemma 35.7.7. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\{ f_ i : X_ i \to X\} _{i \in I}$ be an fpqc covering such that each $f_ i^*\mathcal{F}$ is a locally projective $\mathcal{O}_{X_ i}$-module. Then $\mathcal{F}$ is a locally projective $\mathcal{O}_ X$-module.
Proof. Omitted. For Zariski coverings this is Properties, Lemma 28.21.2. For the affine case this is Algebra, Theorem 10.95.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: