Lemma 26.19.7. Let $f : X \to S$ be a quasi-compact morphism of schemes. The following are equivalent
$f(X) \subset S$ is closed, and
$f(X) \subset S$ is stable under specialization.
Lemma 26.19.7. Let $f : X \to S$ be a quasi-compact morphism of schemes. The following are equivalent
$f(X) \subset S$ is closed, and
$f(X) \subset S$ is stable under specialization.
Proof. We have (1) $\Rightarrow $ (2) by Topology, Lemma 5.19.2. Assume (2). Let $U \subset S$ be an affine open. It suffices to prove that $f(X) \cap U$ is closed. Since $U \cap f(X)$ is stable under specializations in $U$, we have reduced to the case where $S$ is affine. Because $f$ is quasi-compact we deduce that $X = f^{-1}(S)$ is quasi-compact as $S$ is affine. Thus we may write $X = \bigcup _{i = 1}^ n U_ i$ with $U_ i \subset X$ open affine. Say $S = \mathop{\mathrm{Spec}}(R)$ and $U_ i = \mathop{\mathrm{Spec}}(A_ i)$ for some $R$-algebra $A_ i$. Then $f(X) = \mathop{\mathrm{Im}}(\mathop{\mathrm{Spec}}(A_1 \times \ldots \times A_ n) \to \mathop{\mathrm{Spec}}(R))$. Thus the lemma follows from Algebra, Lemma 10.41.5. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3070 by Dario Weißmann on
Comment #3171 by Johan on
There are also: