The Stacks project

110.35 Zero dimensional local ring with nonzero flat ideal

In [Lazard] and [Autour] there is an example of a zero dimensional local ring with a nonzero flat ideal. Here is the construction. Let $k$ be a field. Let $X_ i, Y_ i$, $i \geq 1$ be variables. Take $R = k[X_ i, Y_ i]/(X_ i - Y_ i X_{i + 1}, Y_ i^2)$. Denote $x_ i$, resp. $y_ i$ the image of $X_ i$, resp. $Y_ i$ in this ring. Note that

\[ x_ i = y_ i x_{i + 1} = y_ i y_{i +1} x_{i + 2} = y_ i y_{i + 1} y_{i + 2} x_{i + 3} = \ldots \]

in this ring. The ring $R$ has only one prime ideal, namely $\mathfrak m = (x_ i, y_ i)$. We claim that the ideal $I = (x_ i)$ is flat as an $R$-module.

Note that the annihilator of $x_ i$ in $R$ is the ideal $(x_1, x_2, x_3, \ldots , y_ i, y_{i + 1}, y_{i + 2}, \ldots )$. Consider the $R$-module $M$ generated by elements $e_ i$, $i \geq 1$ and relations $e_ i = y_ i e_{i + 1}$. Then $M$ is flat as it is the colimit $\mathop{\mathrm{colim}}\nolimits _ i R$ of copies of $R$ with transition maps

\[ R \xrightarrow {y_1} R \xrightarrow {y_2} R \xrightarrow {y_3} \ldots \]

Note that the annihilator of $e_ i$ in $M$ is the ideal $(x_1, x_2, x_3, \ldots , y_ i, y_{i + 1}, y_{i + 2}, \ldots )$. Since every element of $M$, resp. $I$ can be written as $f e_ i$, resp. $h x_ i$ for some $f, h \in R$ we see that the map $M \to I$, $e_ i \to x_ i$ is an isomorphism and $I$ is flat.

slogan

Lemma 110.35.1. There exists a local ring $R$ with a unique prime ideal and a nonzero ideal $I \subset R$ which is a flat $R$-module

Proof. See discussion above. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05FZ. Beware of the difference between the letter 'O' and the digit '0'.