Lemma 31.8.2. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then $\text{WeakAss}_{X/S}(\mathcal{F}) = \text{Ass}_{X/S}(\mathcal{F})$.
Proof. This is true because the fibres of $f$ are locally Noetherian schemes, and associated and weakly associated points agree on locally Noetherian schemes, see Lemma 31.5.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: