Lemma 15.89.14. Let $\varphi : R \to S$ be a flat ring map and $(f_1, \ldots , f_ t) = R$. Then $\text{Can}$ and $H^0$ are quasi-inverse equivalences of categories
Proof. Consider an object $\mathbf{M} = (M', M_ i, \alpha _ i, \alpha _{ij})$ of $\text{Glue}(R \to S, f_1, \ldots , f_ t)$. By Algebra, Lemma 10.24.5 there exists a unique module $M$ and isomorphisms $M_{f_ i} \to M_ i$ which recover the glueing data $\alpha _{ij}$. Then both $M'$ and $M \otimes _ R S$ are $S$-modules which recover the modules $M_ i \otimes _ R S$ upon localizing at $f_ i$. Whence there is a canonical isomorphism $M \otimes _ R S \to M'$. This shows that $\mathbf{M}$ is in the essential image of $\text{Can}$. Combined with Lemma 15.89.12 the lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: